General information

Course type AMUPIE
Module title Advances In Neuroscience
Language English
Module lecturer prof. dr hab. Grzegorz Króliczak
Lecturer's email
Lecturer position Professor
Faculty Faculty of Psychology and Cognitive Science
Semester 2023/2024 (winter)
Duration 30
USOS code 23-PIE-AIN


Lectures are typically held on Mondays, from 3:00 p.m. to 4:30 p.m., in Building D (or E) on Ogrody Campus, also known as “Szamarzewo” (from the Szamarzewskiego street, where the Campus is situated). They are part of the regular Cognitive Science curriculum.

Module aim (aims)

1. Module aims: As a scientific study of the nervous system, contemporary Neuroscience is a discipline at the crossroads of biology, physiology, anatomy, kinesiology, neuro- and experimental psychology, as well as mathematical modeling. Its ultimate goal is to understand both the fundamental and functional properties of neural systems, and the emerging behavior. Indeed, as relevant to many traditional social science disciplines, it is a very rapidly developing branch of science. The goals of the lecture series are the following:

• to review the state-of-the-art in anatomical, functional, and network approaches to vision, haptics, the control of behavior, and language processing;

• to study the latest and impactful research reports in each of these domains;

• to understand the essentials of research design, data analyses, and interpretations of their outcomes in the area of functional neuroimaging (fMRI) and neurostimulation (TMS).

Therefore, these lectures will cover a wide range of recent neuroscience review and research papers on visual, sensorimotor, task positive, and task negative processing in the human brain. A rich array of research questions will be addressed, starting from how the brain allows us to see and “feel” (haptically) objects, their functions, letters/words and their meaning, how and why people fail in these tasks, and what insights contemporary neuroscientists can bring to support their neurorehabilitation. Upon the completion of the lecture series, students will be re-acquainted with basic concepts from each of the reviewed domains, and familiarized with advanced models and approaches to studying visual, sensory/motor and language processing in the brain.

Pre-requisites in terms of knowledge, skills and social competences (where relevant)

Knowledge of basic concepts in vision, somatosensation, perception, action, and language processing will be helpful in understanding of the discussed lecture material. Yet, there are no specific prerequisites because the lecture and recommended textbook chapters cover them all.


Week 1: Introduction, and overview of course objectives
Week 2: Methods (1) - Resting state connectivity in neurobiology and medicine
Week 3: Methods (2) - Diffusion-weighted tractography and disconnection mapping
Week 4: Brain maps and multi-modal parcellations of the cerebral cortex
Week 5: Visual vs. multimodal processing in the human brain
Week 6: The somatosensory plasticity and compensation of action control
Week 7: Sensorimotor-independent development of hand and tool selectivity in the visual cortex
Week 8: Function/affordance and its processing in different brain pathways
Week 9: Neural bases of tool use and generalized motor programs
Week 10: The neural underpinnings of object perception and basic reading skills
Week 11: Origins of the specialization for letters and numbers in occipito-temporal cortex
Week 12: The language control networks, their intrinsic connectivity, and types of lateralization
Week 13: The origins of atypical language laterality and its relation to other brain functions
Week 14: Structural and functional brain asymmetries in human situs inversus totalis
Week 15: The neural underpinnings of sex addiction and/or sex differences

Reading list

Recommended papers:

  1. Thiebaut de Schotten, M., Forkel, S.J. (2022). The emergent properties of the connected brain. Science, 378(6619), 505-510. doi: 10.1126/science.abq2591
  2. Markello, R.D., Hansen, J.Y., Liu, Z.Q., Bazinet, V., Shafiei, G., Suarez, L.E., . . . Misic, B. (2022). neuromaps: structural and functional interpretation of brain maps. Nat Methods, 19(11), 1472-1479. doi: 10.1038/s41592-022-01625-w
  3. van der Groen, O., Potok, W., Wenderoth, N., Edwards, G., Mattingley, J.B., Edwards, D. (2022). Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neurosci Biobehav Rev, 138, 104702. doi: 10.1016/j.neubiorev.2022.104702
  4. Lv, H., Wang, Z., Tong, E., Williams, L.M., Zaharchuk, G., Zeineh, M., . . . Wintermark, M. (2018). Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know. AJNR Am J Neuroradiol, 39(8), 1390-1399. doi: 10.3174/ajnr.A5527
  5. Waller, L., Erk, S., Pozzi, E., Toenders, Y.J., Haswell, C.C., Buttner, M., . . . Veer, I.M. (2022). ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting-state and task-based fMRI data. Hum Brain Mapp, 43(9), 2727-2742. doi: 10.1002/hbm.25829
  6. Thiebaut de Schotten, M., Foulon, C., Nachev, P. (2020). Brain disconnections link structural connectivity with function and behaviour. Nat Commun, 11(1), 5094. doi: 10.1038/s41467-020-18920-9
  7. Forkel, S.J., Labache, L., Nachev, P., Thiebaut de Schotten, M., Hesling, I. (2022). Stroke disconnectome decodes reading networks. Brain Struct Funct, 227(9), 2897-2908. doi: 10.1007/s00429-022-02575-x
  8. Tremblay, P., Dick, A.S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang, 162, 60-71. doi: 10.1016/j.bandl.2016.08.004
  9. Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., . . . Van Essen, D.C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171-178. doi: 10.1038/nature18933
  10. Rolls, E.T., Huang, C.C., Lin, C.P., Feng, J., Joliot, M. (2020). Automated anatomical labelling atlas 3. Neuroimage, 206, 116189. doi: 10.1016/j.neuroimage.2019.116189
  11. Alvarez, I., Finlayson, N.J., Ei, S., de Haas, B., Greenwood, J.A., Schwarzkopf, D.S. (2021). Heritable functional architecture in human visual cortex. Neuroimage, 239, 118286. doi: 10.1016/j.neuroimage.2021.118286
  12. van den Hurk, J., Van Baelen, M., Op de Beeck, H.P. (2017). Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc Natl Acad Sci U S A, 114(22), E4501-E4510. doi: 10.1073/pnas.1612862114
  13. Striem-Amit, E. (2017). Brain Plasticity: When the Feet and Mouth Replace the Hand. Curr Biol, 27(9), R356-R358. doi: 10.1016/j.cub.2017.03.057
  14. Striem-Amit, E., Vannuscorps, G., Caramazza, A. (2018). Plasticity based on compensatory effector use in the association but not primary sensorimotor cortex of people born without hands. Proc Natl Acad Sci U S A, 115(30), 7801-7806. doi: 10.1073/pnas.1803926115
  15. Striem-Amit, E., Vannuscorps, G., Caramazza, A. (2017). Sensorimotor-independent development of hands and tools selectivity in the visual cortex. Proc Natl Acad Sci U S A, 114(18), 4787-4792. doi: 10.1073/pnas.1620289114
  16. Hahamy, A., Macdonald, S.N., van den Heiligenberg, F., Kieliba, P., Emir, U., Malach, R., . . . Makin, T.R. (2017). Representation of Multiple Body Parts in the Missing-Hand Territory of Congenital One-Handers. Curr Biol, 27(9), 1350-1355. doi: 10.1016/j.cub.2017.03.053
  17. van den Heiligenberg, F.M.Z., Orlov, T., Macdonald, S.N., Duff, E.P., Henderson Slater, D., Beckmann, C.F., . . . Makin, T.R. (2018). Artificial limb representation in amputees. Brain, 141(5), 1422-1433. doi: 10.1093/brain/awy054
  18. Styrkowiec, P.P., Nowik, A.M., Kroliczak, G. (2019). The neural underpinnings of haptically guided functional grasping of tools: An fMRI study. Neuroimage, 194, 149-162. doi: 10.1016/j.neuroimage.2019.03.043
  19. Wandelt, S.K., Kellis, S., Bjanes, D.A., Pejsa, K., Lee, B., Liu, C., Andersen, R.A. (2022). Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human. Neuron, 110(11), 1777-1787 e1773. doi: 10.1016/j.neuron.2022.03.009
  20. Osiurak, F., Rossetti, Y., & Badets, A. (2017). What is an affordance? 40 years later. Neuroscience & Biobehavioral Reviews, 77, 403-417.
  21. Osiurak, F., Lesourd, M., Delporte, L., & Rossetti, Y. (2018). Tool Use and Generalized Motor Programs: We All Are Natural Born Poly-Dexters. Sci Rep, 8, 10429.
  22. Kroliczak, G., Buchwald, M., Kleka, P., Klichowski, M., Potok, W., Nowik, A. M., Randerath, J., & Piper, B. J. (2021). Manual praxis and language-production networks, and their links to handedness. Cortex, 140, 110-127.
  23. Dehaene, S., Cohen, L., Morais, J., Kolinsky, R., 2015. Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience 16, 234-244.
  24. Hervais-Adelman, A., Kumar, U., Mishra, R. K., Tripathi, V. N., Guleria, A., Singh, J. P., Eisner, F., & Huettig, F. (2019). Learning to read recycles visual cortical networks without destruction. Sci Adv, 5(9), eaax0262.
  25. Mazoyer, B., Zago, L., Jobard, G., Crivello, F., Joliot, M., Perchey, G., Mellet, E., Petit, L., & Tzourio-Mazoyer, N. (2014). Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS ONE, 9(6), e101165.
  26. Labache, L., Joliot, M., Saracco, J., Jobard, G., Hesling, I., Zago, L., Mellet, E., Petit, L., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2019). A SENtence Supramodal Areas AtlaS (SENSAAS) based on multiple task-induced activation mapping and graph analysis of intrinsic connectivity in 144 healthy right-handers. Brain Struct Funct, 224(2), 859-882.
  27. Labache, L., Mazoyer, B., Joliot, M., Crivello, F., Hesling, I., & Tzourio-Mazoyer, N. (2020). Typical and atypical language brain organization based on intrinsic connectivity and multitask functional asymmetries. Elife, 9.
  28. Hannagan, T., Amedi, A., Cohen, L., Dehaene-Lambertz, G., & Dehaene, S. (2015). Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends in Cognitive Sciences, 19, 374-382.
  29. Daitch, A. L., Foster, B. L., Schrouff, J., Rangarajan, V., Kasikci, I., Gattas, S., & Parvizi, J. (2016). Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition. Proc Natl Acad Sci U S A, 113(46), E7277-E7286.
  30. Yeo, D.J., Wilkey, E.D., & Price, G.R. (2017). The search for the number form area: A functional neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 78, 145-160.
  31. Vingerhoets, G., Li, X., Hou, L., Bogaert, S., Verhelst, H., Gerrits, R., et al. (2018). Brain structural and functional asymmetry in human situs inversus totalis. Brain Struct Funct, 223(4), 1937-1952. doi: 10.1007/s00429-017-1598-5
  32. Vingerhoets, G., Gerrits, R., & Bogaert, S. (2018). Atypical brain functional segregation is more frequent in situs inversus totalis. Cortex, 106, 12-25.
  33. Gerrits, R., Verhelst, H., & Vingerhoets, G. (2020). Mirrored brain organization: Statistical anomaly or reversal of hemispheric functional segregation bias? Proc Natl Acad Sci U S A, 117(25), 14057-14065.
  34. Gerrits, R. (2022). Variability in Hemispheric Functional Segregation Phenotypes: A Review and General Mechanistic Model. Neuropsychol Rev.
  35. Liberg, B., Gorts-Oberg, K., Jokinen, J., Savard, J., Dhejne, C., Arver, S., Fuss, J., Ingvar, M., & Abe, C. (2022). Neural and behavioral correlates of sexual stimuli anticipation point to addiction-like mechanisms in compulsive sexual behavior disorder. J Behav Addict, 11(2), 520-532. DOI: 10.1556/2006.2022.00035
  36. Liu, S., Seidlitz, J., Blumenthal, J. D., Clasen, L. S., & Raznahan, A. (2020). Integrative structural, functional, and transcriptomic analyses of sex-biased brain organization in humans. Proc Natl Acad Sci U S A, 117(31), 18788-18798.
  37. Kiesow, H., Dunbar, R. I. M., Kable, J. W., Kalenscher, T., Vogeley, K., Schilbach, L., Marquand, A. F., Wiecki, T. V., & Bzdok, D. (2020). 10,000 social brains: Sex differentiation in human brain anatomy. Sci Adv, 6(12), eaaz1170. 

Basic textbook chapters:

Only selected and most relevant chapters/sections from the following textbooks will be covered:

(1) Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J. (2013). Principles of Neural Science, Fifth Edition. McGraw-Hill Companies, USA;

(2) Palmer, S. E. (1999). Vision Science. Photons to phenomenology. Cambridge, Massachusetts: The MIT Press.